The importance of medicinal herbs and the effective substances they contain in facing the emerging corona virus (COVID-19) and their uses in our daily life

Mohamed Younes A. Hassan, Idress Hamad Attitalla, Hossam B. Bahnasy

Abstract


Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory coronavirus-2 (SARS-CoV-2), is an extremely infectious disease and has already infected nearly seven million people and caused more than 402,852 deaths in the world. Based on our current knowledge of this virus and in the absence of a vaccine, this article is an attempt to propose ways to prevent treat and control the COVID-19 virus, using medicinal plants such as Eucalyptus globulus Labill, Cymbopogon citratus, Mentha, citrus, Zingiber officinale, Syzygium aromaticum that have been shown to be effective. Ginger (Zingiber officinale Roscoe) is a common and widely used spice. It is rich in various chemical constituents, including phenolic compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers. The health benefits of ginger are mainly attributed to its phenolic compounds, such as gingerols and shogaols. Accumulated investigations have demonstrated that ginger possesses multiple biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, and cardiovascular protective, respiratory protective, ant obesity, antidiabetic, ant nausea, and antiemetic activities. In this review, we summarize current knowledge about the bioactive compounds and bioactivities of ginger, and the mechanisms of action are discussed. We hope that this updated review paper will attract more attention to ginger and its further applications, including its potential to be developed into functional foods or nutraceuticals for the prevention and management of chronic diseases. An effective vaccine to prevent the SARS-CoV-2 causing COVID-19 is yet to be approved. Further, there is no drug that is specific to treat COVID-19. In line with the proposed use of chloroquine, Nigella sativa (black seed) could be considered as a natural substitute that contains a number of bioactive components such as thymoquinone, dithymoquinone, thymohydroquinone, and nigellimine. Among the general and important benefits of those herbs used in this paper and in this research are the merging of herbs together, obtaining general benefits for the human body, strengthening the immune system, improving the properties of the digestive system and blood circulation, general tonics, antioxidants and some other benefits that benefit the person in the face of any disease or bacterial infection or Viral infection.

Keywords


anti-inflammatory; anticancer; antinausea; anti-obesity; antioxidant; phytochemicals (COVID-19)

References


Abdel-Fattah A.M., Matsumoto K., Watanabe H. Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. Eur. J. Pharmacol. 2000; 400:89–97. doi: 10.1016/ s0014-2999(00)00340-x. [PubMed] [CrossRef] [Google Scholar].

Abel-Salam BK. Immunomodulatory effects of black seeds and garlic on alloxan-induced diabetes in albino rat. Allergol Immunopathol (Madr) 2012; 40(6):336–340. [PubMed] [Google Scholar]

Ahmad A., Husain A., Mujeeb M., Khan S.A., Najmi A.K., Siddique N.A., Damanhouri Z.A., Anwar F. A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac. J. Trop. Biomed. 2013; 3:337–352. doi: 10.1016/S2221-1691(13) 60075-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar].

Al-Ali A, Alkhawajah AA, Randhawa MA, Shaikh NA. Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbottabad. 2008;20(2):25–27. [PubMed] [Google Scholar].

Al-Bukhari MI. In: The collection of authentic sayings of prophet mohammad (peace be upon him), division 71 on medicine. 2nd ed. Al-Bukhari Sahi., editor. Ankara: Hilal Yayinlari; 1976. [Google Scholar].

Alessandro Repici, R.M., Matteo Colombo, Roberto Gabbiadini, Marco Spadaccini, Andrea Anderloni, Silvia Carrara, Silvia Carrara, Milena Di Leo, Piera Alessia Galtieri, Gaia Pellegatta, Elisa Chiara Ferrara, Elena Azzolini, Michele Lagioia., Coronavirus (COVID-19) outbreak: what the department of endoscopy should know. GASTROINTESTINAL ENDOSCO-PY., 2020. 0: p. 1-6.

Andreini C., Bertini I., Cavallaro G., Holliday G.L., Thornton J.M. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 2008; 13: 1205–1218. doi: 10.1007/ s00775-008 -0404-5. [PubMed] [CrossRef] [Google Scholar]

Aouacheri, O., Saka, S., Cytoprotective Effects of Zingiber officinale

Against the Oxidative Stress Induced by Lead Acetate Toxicity in Rats.

Phytothérapie., 2020: p. 1-10.

Ashok Kumar Marwah, P.M., Coronavirus (COVID-19): A protocol for prevention, treatment and control. Journal of Applied and Natural Science, 2020. 12(2): p. 119-123.

Avula B., Wang Y.-H., Ali Z., Khan I.A. Quantitative determination of chemical constituents from seeds of Nigella sativa L. using HPLC-UV and identification by LC-ESI-TOF. J. AOAC Int. 2010; 93: 1778–1787. [PubMed] [Google Scholar]

Balachandar Vellingiri, K.J., Mahalaxmi Iyer, Arul Narayanasamy, Vivekanandhan Govindasamy, Bupesh Giridharan, Singaravelu Ganesan, Anila Venugopal, Dhivya Venkatesan, Harsha Ganesan, Kamarajan Rajagopalan, Pattanathu K.S.M. Rahman, Ssang-Goo Cho, Nachimuthu Senthil Kumar, Mohana Devi Subramaniamk., COVID- 19: A promising cure for the global panic. Science of the Total Environment, 2020. 725: p. 1-18.

Bonaventura P., Benedetti G., Albarede F., Miossec P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015; 14:277–285. doi: 10.1016/j.autrev.2014.11.008. [PubMed] [CrossRef] [Google Scholar]

Butt M.S., Sultan M.T. Nigella sativa: reduces the risk of various maladies. Crit. Rev. Food Sci. Nutr. 2010; 50:654–665. doi: 10.1080/10408390902768797. [PubMed] [CrossRef] [Google Scholar]

Carol H. Yan, F.F., Divya P. Prajapati, Christine E. Boone, Adam S. DeConde., Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. International Forum of Allergy & Rhinology., 2020. 0: p. 1-8.

Casadevall A., Pirofski L.-A. The convalescent sera option for containing COVID-19. J. Clin. Invest. 2020; 130: 1545–1548. doi: 10.1172/JCI138003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Charleen Yeo, S.K., Danson Yeo., Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Comment the Lancet., 2020. 5: p. 335-337.

Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E. Zinc and human health: an update. Arch. Toxicol. 2012; 86:521–534. doi: 10.1007/s00204-011-0775- [PubMed] [CrossRef] [Google Scholar]

Chen L., Xiong J., Bao L., Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis. 2020; 20:398–400. doi: 10.1016/S1473-3099(20)30141-9. [PMC free article] [PubMed][CrossRef] [Google Scholar]

Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England) 2020; 395:507–513. doi: 10.1016/ S0140-6736 (20) 30211-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Colson P., Rolain J.-M., Lagier J.-C., Brouqui P., Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents. 2020 doi: 10.1016/ j.ijantimicag. 2020.105932. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Conti P., Gallenga C.E., Tete G., Caraffa A., Ronconi G., Younes A., Toniato E., Ross R., Kritas S.K. How to reduce the likelihood of coronavirus-19 (CoV-19 or SARS-CoV-2) infection and lung inflammation mediated by IL-1. J. Biol. Regul. Homeost. Agents. 2020 doi: 10.23812/Editorial-Conti- [PubMed] [CrossRef] [Google Scholar]

Cortegiani A., Ingoglia G., Ippolito M., Giarratano A., Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care. 2020 doi: 10.1016/j.jcrc.2020.03.005. [PMC free article] [PubMed][CrossRef] [Google Scholar]

Cousins R.J., Dunn M.A., Leinart A.S., Yedinak K.C., DiSilvestro R.A. Coordinate regulation of zinc metabolism and metallothionein gene expression in rats. Am. J. Physiol. 1986;251:E688–94.[PubMed] [Google Scholar]

Cousins R.J., Liuzzi J.P., Lichten L.A. Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 2006; 281:24085–24089. doi: 10.1074/ jbc. R600011200. [PubMed] [CrossRef] [Google Scholar]

Davis AL, Lewis JR, Cai Y, Powell C, Davis AP, Wilkins JPG, Pudney P, Clifford MN, A polyphenolic pigment from black tea. Phytochem, 46(8), 1997, 1397–1402.

Deepanjeet Kaur, K.K.C., Syzygium aromaticum L. (Clove): A vital

herbal drug used in periodontal disease. Indian Journal of

Pharmaceutical and Biological Research (IJPBR). 2017. 5 (2): p. 45-51.

Denison M.R., Perlman S. Translation and processing of mouse hepatitis virus virion RNA in a cell-free system. J. Virol. 1986; 60:12–18. [PMC free article] [PubMed] [Google Scholar]

Denison M.R., Zoltick P.W., Hughes S.A., Giangreco B., Olson A.L., Perlman S., Leibowitz J.L., Weiss S.R. Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology. 1992; 189:274–284. doi: 10.1016/0042-6822(92)90703-r. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Devaux C.A., Rolain J.-M., Colson P., Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents. 2020:105938. doi: 10.1016/ j.ijantimicag. 2020.105938. [PMC free article] [PubMed][CrossRef] [Google Scholar]

Elena Gonzalez-Burgos, M.L., Jonas Viskelis, Vaidotas Zvikas,

Valdimaras Janulis, M. Pilar Gomez-Serranillos., Antioxidant activity,

neuroprotective properties and bioactive constituents analysis of

varying polarity extracts from Eucalyptus globulus leaves. Journal of

food and drug analysis., 2018. 26: p. 1293-1302.

Falzarano D., de Wit E., Martellaro C., Callison J., Munster V.J., Feldmann H. Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin. Sci. Rep. 2013; 3:1686. doi: 10.1038/srep01686. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 2015; 1282:1–23. doi: 10.1007/978-1-4939-2438-7_1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Forni D., Cagliani R., Clerici M., Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017; 25:35–48. doi: 10.1016/j.tim.2016.09.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Foster M., Samman S. Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients. 2012; 4:676–694. doi: 10.3390/nu4070676. [PMC free article][PubMed] [CrossRef] [Google Scholar]

Furuta Y., Takahashi K., Shiraki K., Sakamoto K., Smee D.F., Barnard D.L., Gowen B.B., Julander J.G., Morrey J.D. T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res. 2009; 82:95–102. doi: 10.1016/j.antiviral.2009.02.198.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

Gao J., Tian Z., Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends. 2020; 14:72–73. doi: 10.5582/bst.2020.01047. [PubMed] [CrossRef] [Google Scholar]

Gholamnezhad Z., Havakhah S., Boskabady M.H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: a review. J. Ethnopharmacol. 2016; 190:372–386. doi: 10.1016/j.jep.2016.06.061. [PubMed] [CrossRef] [Google Scholar]

Gordon C.J., Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020 doi: 10.1074/jbc.AC120.013056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Goreja WG. Black seed: nature's miracle remedy. New York, NY: Amazing Herbs Press; 2003. [Google Scholar]

Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203:631–637. doi: 10.1002/path.1570. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Haraguchi Y., Sakurai H., Hussain S., Anner B.M., Hoshino H. Inhibition of HIV-1 infection by zinc group metal compounds. Antiviral Res. 1999; 43:123–133. doi: 10.1016/s0166-3542(99)00040-6.[PubMed] [CrossRef] [Google Scholar]

Hasan R., Rink L., Haase H. Chelation of free Zn (2) (+) impairs chemotaxis, phagocytosis, oxidative burst, degranulation, and cytokine production by neutrophil granulocytes. Biol. Trace Elem. Res. 2016; 171:79–88. doi: 10.1007/s12011-015-0515-0. [PubMed] [CrossRef] [Google Scholar]

Hayden M.S., Ghosh S. Regulation of NF-kappaB by TNF family cytokines. Semin. Immunol. 2014; 26:253–266. doi: 10.1016/j.smim.2014.05.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

HMPC., C.o.H.M.P., Assessment report on Eucalytus globulus

Labill., Eucalyptus polybractea R.T. Baker and/or Eucalyptus smithii

R.T. Baker, aetheroleum. European Medicine Agency., 2014: p. 1-38.

Houghton P.J., Zarka R., de las Heras B., Hoult J.R. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995; 61:33–36. doi: 10.1055/s-2006-957994. [PubMed] [CrossRef] [Google Scholar]

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England) 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Huang L., Kirschke C.P., Zhang Y., Yu Y.Y. The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 2005; 280:15456–15463. doi: 10.1074/jbc.M412188200. [PubMed] [CrossRef] [Google Scholar]

Hui D.S., Memish Z.A., Zumla A. Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr. Opin. Pulm. Med. 2014; 20:233–241. doi: 10.1097/MCP.0000000000000046.[PubMed] [CrossRef] [Google Scholar]

Hussin A. Rothan, S.N.B., The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity., 2020. 109: p. 1-5.

Ijaz H., Tulain U.R., Qureshi J., Danish Z., Musayab S., Akhtar M.F., Saleem A., Khan K.K., Zaman M., Waheed I., Khan I., Abdel-Daim M. Review: nigella sativa (Prophetic medicine): a review. Pak. J. Pharm. Sci. 2017; 30:229–234. [PubMed] [Google Scholar]

J. Tummers, C.C., H. Tobi, B. Tekinerdogan, G. Leusink., Coronaviruses and people with intellectual disability: an exploratory data analysis. Journal of Intellectual Disability Research., 2020: p. 1-7.

Jansen J.M., Gerlach T., Elbahesh H., Rimmelzwaan G.F., Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J. Clin. Virol. 2019; 119:44–52. doi: 10.1016/j.jcv.2019.08.009. [PubMed] [CrossRef] [Google Scholar]

Jiang P., Mizushima N. Autophagy and human diseases. Cell Res. 2014; 24:69–79. doi: 10.1038/cr.2013.161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Jin X, L.J.-S., Hu J-H, et al., Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. bsg., 2020. 69: p. 1002– 1009.

JINYANG GU, B.H., JIAN WANG., COVID-19: Gastrointestinal Manifestations and Potential Fecal–Oral Transmission. Gastroenterology., 2020. 158: p. 1518–1519.

Juan Wang, G.D., COVID-19 may transmit through aerosol. Irish Journal of Medical Science., 2020: p. 1-2.

Katz E., Margalith E. Inhibition of vaccinia virus maturation by zinc chloride. Antimicrob. Agents Chemother. 1981; 19:213–217. doi: 10.1128/aac.19.2.213. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Kaushik N., Subramani C., Anang S., Muthumohan R., Shalimar, Nayak B., Ranjith-Kumar C.T., Surjit M. Zinc salts block hepatitis e virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J. Virol. 2017:91. doi: 10.1128/JVI.00754-17. [PMC free article][PubMed] [CrossRef] [Google Scholar]

Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother. 2009; 53:3416–3421. doi: 10.1128/AAC.01509-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Kiralan M. Volatile compounds of black cumin seeds (Nigella sativa L.) from microwave-heating and conventional roasting. J. Food Sci. 2012;77:C481–4. doi: 10.1111/j.1750-3841.2012.02638.x.[PubMed] [CrossRef] [Google Scholar]

Klein C., Heyduk T., Sunahara R.K. Zinc inhibition of adenylyl cyclase correlates with conformational changes in the enzyme. Cell. Signal. 2004; 16:1177–1185. doi: 10.1016/j.cellsig.2004.03.008. [PubMed] [CrossRef] [Google Scholar]

Kooti W., Hasanzadeh-Noohi Z., Sharafi-Ahvazi N., Asadi-Samani M., Ashtary-Larky D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa) Chin. J. Nat. Med. 2016; 14:732–745. doi: 10.1016/S1875-5364(16)30088-7. [PubMed] [CrossRef] [Google Scholar]

Korant B.D., Kauer J.C., Butterworth B.E. Zinc ions inhibit replication of rhinoviruses. Nature. 1974; 248:588–590. doi: 10.1038/248588a0. [PubMed] [CrossRef] [Google Scholar]

Krenn B.M., Gaudernak E., Holzer B., Lanke K., Van Kuppeveld F.J.M., Seipelt J. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J. Virol. 2009; 83:58–64. doi: 10.1128/JVI.01543-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., Bao L., Zhang B., Liu G., Wang Z., Chappell M., Liu Y., Zheng D., Leibbrandt A., Wada T., Slutsky A.S., Liu D., Qin C., Jiang C., Penninger J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005; 11:875–879. doi: 10.1038/nm1267. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Langmead L, Rampton D. S. Review article: Herbal treatment in gastrointestinal and liver disease-benefits and dangers. Aliment Pharmacol Ther. 2001;15(9):1239–52. [PubMed]

Lanke K., Krenn B.M., Melchers W.J.G., Seipelt J., van Kuppeveld F.J.M. PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells. J. Gen. Virol. 2007; 88:1206–1217. doi: 10.1099/vir.0.82634-0. [PubMed] [CrossRef] [Google Scholar]

Lantz I., Glamsta E.L., Talback L., Nyberg F. Hemorphins derived from hemoglobin have an inhibitory action on angiotensin converting enzyme activity. FEBS Lett. 1991; 287:39–41. doi: 10.1016/0014-5793(91)80011-q. [PubMed] [CrossRef] [Google Scholar]

Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009;1: a001651. doi: 10.1101/cshperspect. a001651. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Lescure F.-X., Bouadma L., Nguyen D., Parisey M., Wicky P.-H., Behillil S., Gaymard A., Bouscambert-Duchamp M., Donati F., Le Hingrat Q., Enouf V., Houhou-Fidouh N., Valette M., Mailles A., Lucet J.-C., Mentre F., Duval X., Descamps D., Malvy D., Timsit J.-F., Lina B., van-der-Werf S., Yazdanpanah Y. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30200-0. [PMC free article][PubMed] [CrossRef] [Google Scholar]

Levine B., Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019; 176:11–42. doi: 10.1016/j.cell.2018.09.048. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., Choe H., Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426:450–454. doi: 10.1038/nature02145.[PMC free article] [PubMed] [CrossRef] [Google Scholar]

Lichten L.A., Cousins R.J. Mammalian zinc transporters: nutritional and physiologic regulation. Annu. Rev. Nutr. 2009; 29:153–176. doi: 10.1146/annurev-nutr-033009-083312. [PubMed] [CrossRef] [Google Scholar]

Liu L., Wei Q., Alvarez X., Wang H., Du Y., Zhu H., Jiang H., Zhou J., Lam P., Zhang L., Lackner A., Qin C., Chen Z. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J. Virol. 2011; 85:4025–4030. doi: 10.1128/JVI.02292-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Liu X., El-Aty Abd, A.M Cho, S.-K Yang, A Park, J.-H Shim, J.-H Characterization of secondary volatile profiles in Nigella sativa seeds from two different origins using accelerated solvent extraction and gas chromatography-mass spectrometry. Biomed. Chromatogr. 2012; 26:1157–1162. doi: 10.1002/bmc.2671. [PubMed] [CrossRef] [Google Scholar]

Liuzzi J.P., Yoo C. Role of zinc in the regulation of autophagy during ethanol exposure in human hepatoma cells. Biol. Trace Elem. Res. 2013; 156:350–356. doi: 10.1007/s12011-013-9816-3.[PubMed] [CrossRef] [Google Scholar]

Lubke T., Lobel P., Sleat D.E. Proteomics of the lysosome. Biochim. Biophys. Acta. 2009; 1793:625–635. doi: 10.1016/j.bbamcr.2008.09.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Lynes M.A., Zaffuto K., Unfricht D.W., Marusov G., Samson J.S., Yin X. The physiological roles of extracellular metallothionein. Exp. Biol. Med. 2006; 231:1548–1554. [PubMed] [Google Scholar]

Mallapaty S. Why does the coronavirus spread so easily between people? Nature. 2020 doi: 10.1038/d41586-020-00660-x. [PubMed] [CrossRef] [Google Scholar]

Mani Divya, S.V., Jingdi Chen, Baskaralingam Vaseeharan, Esteban F.Durán-Lara., A review of South Indian medicinal plant has the ability to combat against deadly viruses along with COVID-19? Microbial Pathogenesis., 2020: p. 1-24.

Maywald M., Rink L. Zinc supplementation induces CD4(+) CD25(+) Foxp3(+) antigen-specific regulatory T cells and suppresses IFN-gamma production by upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. Eur. J. Nutr. 2017; 56:1859–1869. doi: 10.1007/s00394-016-1228-7.[PubMed] [CrossRef] [Google Scholar]

Meijer A.J., Codogno P. Autophagy: regulation and role in disease. Crit. Rev. Clin. Lab. Sci. 2009; 46:210–240. doi: 10.1080/10408360903044068. [PubMed] [CrossRef] [Google Scholar]

Mizushima N. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol. 2018; 20:521–527. doi: 10.1038/s41556-018-0092-5. [PubMed] [CrossRef] [Google Scholar]

Mizushima N., Levine B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 2010; 12:823–830. doi: 10.1038/ncb0910-823. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Nickavar B., Mojab F., Javidnia K., Amoli M.A.R. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Z. Naturforsch. C. 2003; 58:629–631. doi: 10.1515/znc-2003-9-1004. [PubMed] [CrossRef] [Google Scholar]

Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., Guo L., Guo R., Chen T., Hu J., Xiang Z., Mu Z., Chen X., Chen J., Hu K., Jin Q., Wang J., Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020; 11:1620. doi: 10.1038/s41467-020-15562-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Padhye S., Banerjee S., Ahmad A., Mohammad R., Sarkar F.H. From here to eternity - the secret of Pharaohs: therapeutic potential of black cumin seeds and beyond. Cancer Ther. 2008;6:495–510.[PMC free article] [PubMed] [Google Scholar]

Palmiter R.D., Findley S.D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 1995; 14:639–649. [PMC free article] [PubMed] [Google Scholar]

Ping Wu, L.L., ChunBao Chen, ShengQiong Nie., A child confirmed COVID-19 with only symptoms of conjunctivitis and eyelid dermatitis. Graefe's Archive for Clinical and Experimental Ophthalmology., 2020: p. 1-2.

Qiuhong Wang, A.N.V., Scott P Kenney, Linda J Saif., Emerging and re-emerging coronaviruses in pigs Qiuhong Wang, Anastasia N Vlasova, Scott P Kenney and Linda J Saif. Current Opinion in Virology., 2019. 34: p. 39–49.

Rahman M.T., Idid S.Z. Can Zn be a critical element in COVID-19 treatment? Biol. Trace Elem. Res. 2020 doi: 10.1007/s12011-020-02194-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Rahman M.T., Karim M.M. Metallothionein: a potential link in the regulation of zinc in nutritional immunity. Biol. Trace Elem. Res. 2018; 182:1–13. doi: 10.1007/s12011-017-1061-8. [PubMed] [CrossRef] [Google Scholar]

Reginster J. Y, Gillot V, Bruyere O, Henrotin Y. Evidence of nutriceutical effectiveness in the treatment of osteoarthritis. Curr Rheumatol Rep. 2000;2(6):472–7. [PubMed]

Rosenkranz E., Metz C.H.D., Maywald M., Hilgers R.-D., Wessels I., Senff T., Haase H., Jager M., Ott M., Aspinall R., Plumakers B., Rink L. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol. Nutr. Food Res. 2016; 60:661–671. doi: 10.1002/mnfr.201500524. [PubMed] [CrossRef] [Google Scholar]

Sargiacomo C., Sotgia F., Lisanti M.P. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging (Albany. NY) 2020 doi: 10.18632/aging.103001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Saussurea costus may help in the treatment of COVID-19 Vol. 24 No. 3 July 2020 Mahmoud Saif-Al-Islam.

Shankar A.H., Prasad A.S. Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998;68:447S–463S. [PubMed] [Google Scholar]

Shihua Luo, X.Z., and Haibo Xu., Don’t Overlook Digestive Symptoms in Patients With 2019 Novel Coronavirus Disease (COVID- 19). Clinical Gastroenterology and Hepatology., 2020. 18: p. 1636– 1637.

Shilei Wang, Y.Z., Shuo Liu, Hongmei Peng, Vienna Mackey, Lichun Sun., Coronaviruses and the Associated Potential Therapeutics for the Viral Infections. Journal of Infectious Diseases & Therapy., 2020. 8(2): p. 1-9.

Singh A.K., Singh A., Shaikh A., Singh R., Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: a systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr. 2020; 14:241–246. doi: 10.1016/j.dsx.2020.03.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Stefanidou M., Maravelias C., Dona A., Spiliopoulou C. Zinc: a multipurpose trace element. Arch. Toxicol. 2006; 80:1–9. doi: 10.1007/s00204-005-0009-5. [PubMed] [CrossRef] [Google Scholar]

Stephen A. Lauer, M., PhD, Kyra H. Grantz, BA, Qifang Bi, MHS, Forrest K. Jones, MPH, Qulu Zheng et al., The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. ACP Journals., 2020: p. 1-4.

Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016; 24:490–502. doi: 10.1016/j.tim.2016.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Suara R.O., Crowe J.E.J. Effect of zinc salts on respiratory syncytial virus replication. Antimicrob. Agents Chemother. 2004; 48:783–790. doi: 10.1128/aac.48.3.783-790.2004. [PMC free article][PubMed] [CrossRef] [Google Scholar]

Takai S., Song K., Tanaka T., Okunishi H., Miyazaki M. Antinociceptive effects of angiotensin-converting enzyme inhibitors and an angiotensin II receptor antagonist in mice. Life Sci. 1996;59:PL331–336. doi: 10.1016/0024-3205(96)00527-9. [PubMed] [CrossRef] [Google Scholar]

te Velthuis A.J.W., van den Worm S.H.E., Sims A.C., Baric R.S., Snijder E.J., van Hemert M.J. Zn (2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6: e1001176. doi: 10.1371/journal.ppat.1001176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Thomas T. Haider, M.D., Monica Haider, Review of Human Coronaviruses and Other Respiratory Viruses and their Neurological Impact on the Central Nervous System. BackBone., 2020: p. 1-3.

Touret F., de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020; 177:104762. doi: 10.1016/j.antiviral.2020.104762. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Trisha Greenhalgh, G.C.H.K., Josip Car., Covid-19: a remote assessment in primary care. BMJ., 2020. 368: p. 1-5.

Uchide N., Ohyama K., Bessho T., Yuan B., Yamakawa T. Effect of antioxidants on apoptosis induced by influenza virus infection: inhibition of viral gene replication and transcription with pyrrolidine dithiocarbamate. Antiviral Res. 2002; 56:207–217. doi: 10.1016/s0166-3542(02)00109-2.[PubMed] [CrossRef] [Google Scholar]

Vallee B.L., Falchuk K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993;73:79–118.[PubMed] [Google Scholar]

Wang L., He W., Yu X., Hu D., Bao M., Liu H., Zhou J., Jiang H. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020 doi: 10.1016/j.jinf.2020.03.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 doi: 10.1038/s41422-020-0282-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wang Z., Yang B., Li Q., Wen L., Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020 doi: 10.1093/cid/ciaa272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Whitmire J.K., Ahmed R. Costimulation in antiviral immunity: differential requirements for CD4(+) and CD8(+) T cell responses. Curr. Opin. Immunol. 2000; 12:448–455. doi: 10.1016/s0952-7915(00)00119-9. [PubMed] [CrossRef] [Google Scholar]

Wong H.K., Lee C.K. Pivotal role of convalescent plasma in managing emerging infectious diseases. Vox Sang. 2020 doi: 10.1111/vox.12927. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P., Meng J., Zhu Z., Zhang Z., Wang J., Sheng J., Quan L., Xia Z., Tan W., Cheng G., Jiang T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020; 27:325–328. doi: 10.1016/j.chom.2020.02.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wu K. L, Rayner C. K, Chuah S. K, editors. et al., Effects of ginger on gastric emptying and motility in healthy humans. Eur J Gastroenterol Hepatol. 2008;20(5):436–40. [PubMed]

Xue J., Moyer A., Peng B., Wu J., Hannafon B.N., Ding W.-Q. Chloroquine is a zinc ionophore. PLoS One. 2014;9: e109180. doi: 10.1371/journal.pone.0109180. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., Liu X., Zhao L., Dong E., Song C., Zhan S., Lu R., Li H., Tan W., Liu D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Clin. Infect. Dis. an Off. Publ. Infect. Dis. Soc. Am. 2020 doi: 10.1093/cid/ciaa237. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Yen GC, Chen HY, Relationship between antimutagenic activity and major components of various teas. Mutagenesis, 11(1), 1996, 37–41.

Yoshikawa M, Hatakeyama S, Taniguchi K, Matuda H, Yamahara J. [6]-gingesulfonic acid, a new anti-ulcer principle, and gingerglycolipids A, B, and C, three new monoacyldigalactosylglycerols, from Zingiberis rhizoma originating in Taiwan. Chem Pharm Bull (Tokyo). 1992;40(8):2239–41. [PubMed]

Yoshikawa M, Yamaguchi S, Kunimi K, Matsuda H, Okuno Y, Yamahara J, Murakami N. Stomachic principles in ginger. III. An anti-ulcer principle, 6-gingesulfonic acid, and three monoacyldi- galactosylglycerols, gingerglycolipids A, B, and C, from Zingiberis rhizoma originating in Taiwan. Chem Pharm Bull (Tokyo). 1994;42(6):1226–30. [PubMed]

Yu Chen, Q.L., Deyin Guo., Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol., 2020. 92: p. 418– 423.

Yuan Tian, L.R., Weidong Nian, Yan He., Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther., 2020. 51: p. 843–851.

Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 382:727–733. doi: 10.1056/ NEJMoa2001017. [PMC free article] [PubMed] [CrossRef] [Google Scholar].


Full Text: PDF

Copyright (c) 2021 International Journal of Chemical and Lifesciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.